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Abstract: Automated image segmentation is a critical step toward 
achieving a quantitative evaluation of disease states with imaging 
techniques. Two-photon fluorescence microscopy (TPM) has been 
employed to visualize the retinal pigmented epithelium (RPE) and provide 
images indicating the health of the retina. However, segmentation of RPE 
cells within TPM images is difficult due to small differences in fluorescence 
intensity between cell borders and cell bodies. Here we present a semi-
automated method for segmenting RPE cells that relies upon multiple weak 
features that differentiate cell borders from the remaining image. These 
features were scored by a search optimization procedure that built up the 
cell border in segments around a nucleus of interest. With six images used 
as a test, our method correctly identified cell borders for 69% of nuclei on 
average. Performance was strongly dependent upon increasing retinosome 
content in the RPE. TPM image analysis has the potential of providing 
improved early quantitative assessments of diseases affecting the RPE. 

©2015 Optical Society of America 

OCIS codes: (170.3880) Medical and biological imaging; (170.2520) Fluorescence microscopy; 
(100.2960) Image analysis. 
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Abbreviations 

AMD, age-related macular dystrophy; RPE, retinal pigmented epithelium; SLO, scanning 
laser ophthalmoscope; TPM, two-photon fluorescence microscopy 

1. Introduction 

The structural and fluorescent properties of the retinal pigmented epithelium (RPE) cells in 
the retina are affected by several eye diseases such as age-related macular dystrophy (AMD) 
[1], glaucoma [2], and cone-rod dystrophy [3]. Two-photon fluorescence microscopy (TPM) 
allows non-invasive imaging of the RPE when paired with adaptive optics [4]. TPM can 
resolve and differentiate between retinosomes and damaging products of the visual cycle 
sequestered in the RPE [5]. Retinosomes contain retinyl esters, components of the retinoid 
cycle that restore visual pigments to their ‘ready-to-be-activated’ state. Both a lack of 
retinosomes and their increased dimensions could be indicative of a malfunctioning retinoid 
cycle as demonstrated by Lrat–/– and Rpe65–/– mice, respectively. To take advantage of the 
powerful capabilities of TPM, as with all imaging modalities, automated segmentation 
methods will be critical for analysis of imaging data sets [6]. 

If a structure is correctly segmented into its components, quantitative features of the 
structure such as area and density can be calculated [7]. Then, these features can be used to 
differentiate between healthy and diseased states [8, 9] and create a quantitative description of 
disease pathology [2]. 

Automated and quantitative processing of images have been developed for many features 
of the retina. For example, methods have been developed for identifying and segmenting: a) 
photoreceptor cells both labeled with immune-cytochemistry visualized microscopically and 
by adaptive optics ophthalmoscope [10, 11]; b) AMD and geographic atrophy from infrared 
and autofluorescent images [12]; c) increased fluorescent areas in the parapapillary region of 
glaucoma patients’ retinas idenfied with a semiautomatic SLO (SLO) [2]; d) the optic disc 
with an ophthalmoscope [8]; and e) RPE cells with a fluorescent SLO [9]. Lastly, Chiu et al 
presented a method for segmenting RPE cells from confocal microscopy images [13]. 

However, none of these methods are directly applicable to segmentation of the RPE 
imaged by TPM. For example, only the cell borders of the RPE are visible when imaged by 
SLO. With TPM, more details about the cells are distinguishable including the retinosomes 
and nuclei. However, segmenting individual RPE cells is more challenging because the 
fluorescence of the borders is less distinguishable from that of the cell bodies, especially on a 
pixel by pixel basis, reducing the effectiveness of typical gradient- and intensity-based 
segmentation methods. 

Many segmentation methods are based on histograms of image intensities [6]. Region 
growing is an alternative to edge based segmentation [14]. This strategy relies upon the 
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features being sufficiently distinct to prevent accumulation of one region into another based 
on well-defined edges, intensity, and texture – attributes not found in TPM images of RPE. 

Here, we present a semi-automated method for segmenting RPE cells imaged by TPM. 
The proposed method is designed to identify the border surrounding a nucleus within the 
image. It overcomes the weak signal of the cell border by two means. First, though the border 
is difficult to distinguish on a pixel by pixel basis, it can be identified over a region of pixels. 
Therefore, the method draws the cell border around a nucleus in segments. Second, the 
method employs a combination of gradient, intensity, and other features to determine the 
score of a border segment. In a ‘greedy’-search, the method in turn selects those consecutive 
segments that score the best and are therefore the most likely to fall within the actual cell 
border. The only critical assumption our method makes about the structure of the image is that 
there is at least one nucleus per cell. 

Testing on images collected from healthy retinas demonstrated that this method correctly 
identified individual RPE cells with up to 92% accuracy. In four images of aged retina, where 
the honey-comb structure of the RPE layer breaks down, the accuracy averaged 58%. 
Accuracy was determined in comparison to manually identified RPE cells, wherein a cell was 
considered correctly identified if the border encompassed the same nuclei within the cell as 
identified manually. 

2. Methods 

2.1 Implementation 

All methods were implemented in the Ruby programming language in an object-oriented 
fashion. The software is freely available for academic institutions upon request. External 
libraries used included the RMagick library for reading in images and the Gnuplot library for 
writing images. The implementation takes about 1.6 minutes to run per nucleus in an image 
using an Amazon c3 compute node. 

2.2 Mice 

BALB/c and B6(Cg)-Tyrc-2J/J mice were obtained from The Jackson Laboratory (Bar Harbor, 
Maine). All mice were housed in the animal facility at the School of Medicine, Case Western 
Reserve University, where they were maintained on a normal mouse chow diet in a 12 h light 
(~10 lux)/12 h dark cyclic environment. All animal procedures and experiments were 
approved by the Case Western Reserve University Animal Care Committees and conformed 
to both the recommendations of the American Veterinary Medical Association Panel on 
Euthanasia and the Association of Research for Vision and Ophthalmology. 

2.3 Image collection 

TPM images of BALB/c and B6(Cg)-Tyrc-2J/J mice RPE were collected as previously 
described [15] using 730 nm excitation. Two images of four week old mice were collected 
with a resolution of 1024x1024. For analysis, they were down-sampled to 425x425 and 
contained 0.431 microns per pixel. Four images of two- and ten- month old mice were 
collected and analyzed with a resolution of 512x512, with each pixel representing 0.357 
microns. 

2.4 Nuclei segmentation with manual threshold selection 

The minimum error threshold technique was used to segment nuclei from the background 
[16]. The number of histogram bins used for thresholding ranged between five and thirty (Fig. 
6). From the resulting images, the best thresholded image was selected by visual inspection 
focused on minimizing noise without losing nuclei. Next, segmented pixel nuclei were set to 
negative-three times their original value to separate them from background and to retain 
nuclei pixels as prominent features during the next step which was to blur the image (Fig. 
7(A)). Blurring was done by averaging the pixels in the 9x9 box of pixels surrounding each 
pixel (Fig. 7(B)). The final step was a second round of minimum error thresholding and again 
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visually selecting the best image by reducing noise while leaving nuclei intact (Fig. 7(C)-
7(E)). Lastly, for use in the next stage of segmenting the RPE cells, pixels selected as nuclei 
were set to an intensity of zero in the original image (Fig. 7(F)). 

2.5 Nuclei segmentation with background correction, scored threshold selection, and noise 
filtering 

To perform background correction and smooth the intensity over the image, the starting image 
(Fig. 8(A)) was first convolved with a 30x30 pixel kernel for uniformly averaging every pixel 
to create the background intensity image (Fig. 8(B)). Then the background intensity image 
was subtracted from the starting image to obtain the background corrected image (Fig. 8(C)), 
which brightens nuclei on the edges of the image relative to nuclei in the center of the image 
and makes the interior nuclei easier to segment (compare segmented nuclei of Fig. 1(A) and 
Fig. 1(B)). 

The minimum error threshold finds the best intensity threshold for a given number of bins 
used to group the intensities, but the optimal number of bins must be determined such that the 
nuclei are best segmented while reducing noise. We propose a score to identify the best 
threshold image. First, thresholding was performed for a number of bins in the range between 
two and twenty four. Next, each of these thresholded images was scored. Because the 
thresholded images contained binary intensities of 0 or 1, the score was calculated as the sum 
of pixels with intensity of one, where an intensity of one indicates the pixel was thresholded 
as part of a nucleus. The rationale for this scoring scheme was that the best thresholded image 
has the smallest amount of pixels identified as nuclei, which also minimizes the amount of 
noise identified as nuclei. This strategy requires that the noise gets removed from foreground 
during thresholding more quickly than the nuclei pixels. 

Using the background corrected image (Fig. 8(C)), we performed minimum error 
thresholding [16] for a number of bins in the range between two to fourteen. Each result was 
scored and the best threshold was selected by score (Fig. 8(D)). Then, the best thresholded 
image was subtracted from the original image (Fig. 9(A)) and blurred (Fig. 9(B)). The blurred 
image was then subjected to another round of minimum error thresholding with the number of 
bins ranging from ten to thirty. 

At this point, all thresholded images were subjected to a filtering and scoring protocol 
taking into account the various features of groups of pixels that were thresholded as nuclei. 
The circularity of the nuclei was scored as follows. For every nucleus, the outer most pixels 
were selected. Then for every nucleus, the distance between the outer pixels and the center of 
the nucleus was calculated. The center was calculated as the mean of the pixel coordinates of 
the nucleus. This allowed an average distance between the center and the outer pixels as well 
as the standard deviation to be calculated for every nucleus. A circular nucleus will have a 
small standard deviation in the distance between the outer pixels and the center. The standard 
deviation of the radii was divided by the average radius to normalize the standard deviation to 
the radius size. This normalized standard deviation was used as the measure of circularity for 
each nucleus. Then, the average and standard deviation of circularity was calculated over all 
nuclei. Nuclei were kept as nuclei if their circularity was less than two standard deviations 
away from the average circularity. 

A second measure of circularity was used that is sensitive to the area of the nucleus in 
relation to its circumference when compared to what is expected based on the radius. The 
radius was calculated as the average distance from outer pixels to the center pixel as described 
above. The area of the nucleus was determined by counting the number of pixels that 
comprised it. The circumference was determined by counting the number of edge pixels of the 
nucleus. An edge pixel is defined as any pixel where one of its 8 surrounding neighbors is not 
also a nucleus pixel. In practice, this meant any pixel with one of its eight neighbors that has 
an intensity greater than 0 is an edge pixel. The ratio between the area and circumference was 
calculated for every identified nucleus. The ratio of area to circumference is equal to 0.5 times 
the radius. To calculate the circularity of a nucleus, 0.5 times the radius was divided by the 
ratio of the area to circumference, which would give a value of one if the nucleus was 
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perfectly circular. This circularity value was calculated for every nucleus, and the average and 
standard deviation were calculated over all nuclei. Every nucleus was then compared to the 
average circularity and considered a nucleus if its circularity deviated by a value less than 0.9 
standard deviations from the average. 

Lastly, nuclei were filtered by size to remove small noise patches. The average area of all 
nuclei was calculated along with the standard deviation. A nucleus was considered not a 
nucleus if its area was more than 1.5 standard deviations less than the mean. 

Valid nuclei were those that met the three criteria given above. Next, a score for each 
thresholded image was calculated based on valid nuclei for that image. The score for an image 
was calculated as the number of valid nuclei in that image multiplied by the square root of the 
average area of the nuclei. This selected for thresholded images that have many nuclei that are 
large in size. The best image (Fig. 9(D)) was then combined with the original image as 
described by setting thresholded nuclei pixels within the original image to an intensity value 
of zero (Fig. 9(E), same as Fig. 1(B)). 

To take advantage of the complementary performance of thresholding with and without 
background correction, the two resulting thresholded images were combined to form a unified 
nuclei threshold image. This has the advantage that both the nuclei in the center were robustly 
segmented as well as those in the edge regions. By combining the pixels identified as nuclei 
from the non-background corrected and background corrected images, the strengths of each 
result are shown in a single image (Fig. 1(C)). Filtering the combined image based on the 
three nuclei criteria described above removed any remaining noise from being identified as 
nuclei (Fig. 1(D)). 
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Fig. 1. Background correction improves nuclei segmentation when combined with non-
background corrected nuclei segmentation. Pixels identified as being part of a nucleus are 
shown with zero intensity (black). A) Nuclei identified without background correction (same as 
Fig. 3(B) panel). B) Nuclei identified with background correction. C) The union of the pixels 
identified as nuclei from A) and B). D) Image from C) after noise filtering to remove false 
positive identification of nuclei pixels. 

2.6 Input for RPE cell border identification 

The images with nuclei segmented based on the manually selected thresholding protocol was 
used as the starting point for segmenting the cells (Fig. 2(A)). Intensity gradients within the 
image were calculated using the original image (non-thresholded nuclei) convoluted with the 
Sobel operator edge detector kernel (Fig. 2(B)). This Sobel gradient image along with the 
original image comprised the two inputs into the algorithm. Nuclei false positives and noise 
regions were filtered before cell segmentation. To filter noise, only the first described measure 
of circularity was used to validate nuclei. To summarize, this was accomplished by first 
calculating the average distance from edge pixels to the center of a nucleus, then calculating 
the average and standard deviation of the radius from those values and comparing the 
resulting mean normalized standard deviation to the average mean normalized standard 
deviation over all nuclei. A nucleus was considered valid and not noise if its circularity was 
within two standard deviations of the mean (Fig. 2(C)). 
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Fig. 2. Initial steps of the RPE cell segmentation process. Cell segmentation uses as input A) a 
segmented nuclei image (here, the same as Fig. 1 A panel) and input B) the gradient image as 
calculated using the Sobel operator on the original image. C) The first step is to filter out noise 
segmented as nuclei. Accepted nuclei are shown with dark black outline. For an overview of 
the full process, see Visualization 1, Visualization 2, and Visualization 3 for demonstrations of 
drawing the searching segments, drawing the border, and assigning pixels to a cell, 
respectively. 

2.7 RPE cell border identification 

The general strategy of our method was to identify the border around a nucleus using multiple 
weak scoring functions. The cell border around each nucleus was determined independently in 
an image. First, the searchable border region was limited to a region not too far and not too 
close to the current nucleus of interest. We used a minimum distance of ten pixels and a 
maximum distance of sixty-four pixels within which a border could be identified (Fig. 10(A)). 
Pixels around the nucleus were grouped into angles of 21 degrees, starting at the upper left 
most pixel of the nucleus (Fig. 10(B)). Boundaries were not repeated; the final wedge has 
three degrees to complete the full 360 circle. The upper-left-most pixel was used as an anchor 
point for defining the angle around the nucleus and considered zero degrees, with the center 
of the nucleus always being the middle vertex. The starting seed for the cell border was 
selected from the wedge of pixels between ten and sixty-four pixels away from the nucleus 
between zero and 21 degrees (Fig. 10(C)). The starting seed was selected by scoring all pixels 
within the wedge and taking the pixel with the best overall score. Four scores were used. 
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Moreover, these scores are also used to score the line segments of pixels being tried as 
candidates for the border edges (see below). 

a) Gradient Score: The average gradient value for a pixel or a set of pixels as calculated 
by the Sobel operator. This works under the assumption that larger gradients will 
occur at cell borders. Score was weighted by −0.0015 during seed-pixel selection. 

b) Nuclei Distance Score: For a single pixel or a set of pixels, the shortest distance from 
any of those pixels to any nuclei. This works under the assumption that border pixels 
are more frequently further away rather than closer to any nucleus. Score was 
weighted by −4000 during seed-pixel selection. 

c) Nucleus of Interest Closeness Score: This score uses two sets of pixels. The first set is 
all the pixels of the nucleus which is currently having its border determined. The 
second set of pixels can be an individual pixel or a set of pixels – for example, a 
border edge. The distance from each pixel in the first set to each pixel in the second 
set is measured in number of pixels. The score is the largest measured distance 
between these two sets of pixels. This works under the assumption that the border 
around the nucleus of interest will be closer to the nucleus rather than farther away 
from it. Score was weighted by 6.0 during seed-pixel selection. 

d) Intensity Score: First, pixels determined to be part of retinosomes were excluded from 
this calculation. Retinosomes were identified by thresholding the image; any pixels 
with intensities more than 1.75 standard deviations greater than the image mean were 
considered part of a retinosome. This threshold was selected because it performed 
satisfactorily upon visual inspection. With this information, the average intensity of a 
pixel or set of pixels was calculated. Any pixels considered part of a retinosome were 
excluded from the calculation of the mean. This works under the assumption that 
border pixels will have low intensities. Score was weighted by 0.012 during seed-
pixel selection. 

If there were no eligible pixels (for example due to the edge of the image) within the 
initial wedge, the search for the starting pixel was moved to the next 21 degree 
wedge and this continued until a wedge with at least one eligible pixel was found. 

With the border starting pixel identified, we then searched for the border's first edge. 
This was accomplished by getting all the pixels in the neighboring wedge in a 
counter-clockwise direction, and scoring the edge formed between each pixel and the 
starting pixel (Fig. 10(D)). The trial edges then were scored using the same four 
scores: the Gradient Score (weight: −0.0015), Nuclei Distance Score (weight: square 
root of Nuclei Distance Score multiplied by −990.0), Nuclei of Interest Closeness 
Score (weight: 4.0), and Intensity Score (weight: 0.0240). The edge with the best 
score was selected. The next 21 degree bin of pixels was also checked to find if it 
offered a better edge than could be created from the first neighboring 21 degree 
wedge. Once the best edge was selected, the process of building up the border 
continued around the nucleus of interest (Visualization 1). If the boundary of the 
image was encountered, the process resumed at the furthest vertex in the clockwise 
direction, and continued edge building in a clockwise direction. Once edges were 
determined around all angles, the starting pixel was linearly connected to the ending 
pixel. 

Edges were formed between non-adjacent pixels by using linear interpolation of the 
rows and columns over the distance between them to connect them. First, the 
distance between the two non-adjacent pixels was calculated. One of the pixels was 
arbitrarily selected as the starting pixel. The distance was linearly divided into 
distance + 1 steps to connect the two pixels. The row and coordinates of subsequent 
pixels were determined by Eq. (1) and Eq. (2). 
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 ( )( )_ _ * _ _ .row row start dist fraction row end row start= + −  (1) 

 ( )( )_ _ * _ _ .col col start dist fraction col end col start= + −  (2) 

where the distance_fraction is the current step divided by the distance, row_start and 
col_start are the coordinates of the starting pixel, and row_end and col_end are the 
coordinates of the ending pixel. 

Six independent trials identifying each cell border were conducted. With each trial, 
the starting seed began within a new angle range at a new position around the 
nucleus, specifically sixty degrees away from the previous starting seed position 
(Visualization 2). After each independent trial, the border determined for that trial 
was scored. Seven scores were used, three of which are described above: Gradient 
Score (weight: −0.0015), Intensity Score (weight: 0.024), Nuclei Distance Score 
(weight: square root of Nuclei Distance Score multiplied by −50.0). The other four 
scores are described below. 

e) Fraction of Pixels on Image Boundary Score: This score provided the fraction of pixels 
within a determined cell border that fell on the edge of the image. The assumption of 
this score was that if most of the pixels comprising a border fall on the edge of the 
image, the pixels cannot properly be circling a nucleus. The score was weighted as 
score squared multiplied by 500. 

f) Border Size Score: The value of this score is the number of pixels that comprise a 
border. This selects for a larger rather than smaller border size. The score was 
weighted as one-third root of the score multiplied by −20. 

g) Boundary Relative to Nucleus Score: First, the circumference of the nucleus for an 
ideal circle based on the area of the nucleus was calculated. Given the area as the 
number of pixels that make up the nucleus, the radius was calculated as if the 
nucleus were a perfect circle. From this radius, the circumference of the nucleus then 
was calculated. The score was the ratio of the nucleus circumference to the border 
size. The border size was the number of pixels comprising the border. If the ratio was 
larger than one, a penalty was assigned to that border because it means the 
circumference of the nucleus is larger than the circumference of the determined 
border of the cell. This score was weighted by 1000. 

h) Border on Nuclei Score: This score compared the coordinates of a border to the 
coordinates of all nuclei within the search region, and gave the number of pixels that 
overlap between these two sets. The assumption of this score is that the border 
should not pass through a nucleus. The value was weighted by 100. 

The border with the best overall score was selected as the border for the cell around the 
current nucleus of interest. The process was repeated for every nucleus identified in the 
image. In the end, a cell border was determined for every valid nucleus. 

The next step was to assign the pixels within a cell border to a nucleus, which allowed the 
cell to be identified based on both its pixels and nucleus (or nuclei if there was more than one 
nucleus). Collecting pixels belonging within a cell for a given nucleus was accomplished by 
collecting pixels starting at the center of a nucleus and growing outward until border pixels 
were encountered (Visualization 3). If more than one nucleus resided within a border, and the 
border for each nucleus contained the center of the other nucleus, both nuclei were considered 
to lie within the same cell. Inconsistencies were resolved by keeping both scenarios. For 
example, if there are two nuclei, the border of the first contains both nuclei, and the border of 
the second contains only the second nucleus, then they were considered to be two cells: one 
with both nuclei and one with only the second nucleus. 
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2.8 RPE cell border identification with revision 

After cells were determined by the pixels and nuclei that made them up, a process was 
implemented to improve the border around a nucleus, n. This approach took advantage of the 
fact that there are frequently multiple nuclei within a cell and therefore multiple borders 
should be available to define the boundary of that cell. In the event that imaging is carried out 
where multiple nuclei are not expected, the same effect can be achieved by running the initial 
border determining protocol more than once and collecting the resulting borders for each 
nucleus. The revision protocol for a given cell, c, containing n was as follows, assuming that 
all nuclei that are contained within the border of c are identified, and all nuclei in cells with 
borders containing the nuclei of c are identified. Scores of the borders for all of these 
identified nuclei were compared to one another. The best scoring border was used to identify 
which cell n belonged to, taking into account three possible scenarios. First, n belongs to the 
cell in which it was originally identified. In this case, the cell originally identified to contain n 
stays as it was originally determined. Second, n belongs to another cell whose border contains 
n but the border of n does not encompass the same region. Here, the border of n is changed to 
be the border of the other cell, and n belongs to a new cell along with any other nuclei within 
that other cell. In the third possible scenario, the best border is derived from a nucleus whose 
border does not contain n. In this case, n cannot be in cells whose nuclear composition 
matches that of the cell with the best scoring border. So, those cells are removed as candidate 
cells for n, and, out of the remaining cells, the best scoring border is taken as the best border 
for n. The result of one of these three scenarios was used to define the revised borders. 

Using the revised nuclei and border assignments, the method made the final determination 
of border and nuclei comprising a cell. The nucleus border assigned to cell c was determined 
by taking the assigned revised border according to the nucleus that cell’s border was derived 
from and recursively continuing until it reached a nucleus which was assigned to its original 
border. This then was the border used for the cell. This process resulted in a single border for 
a cell, even if there were multiple nuclei within it. 

3. Results 

3.1 Nuclei Segmentation with manual threshold selection 

We were able to segment all visible nuclei for the six images (Fig. 3). Although the area of 
each of the nuclei was not entirely recovered, this was not needed to determine the cell border 
by our method. As the images became noisier, false positive nuclei also were evident (e.g. 
Figure 3(F)). At the corners of these images, regions of noise were segmented as nuclei. 
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Fig. 3. Resulting identified nuclei after manually selected thresholding process. The pixels 
identified as being part of a nucleus are shown with zero intensity (black). A-B) 4-week-old 
BALB/c mice C-D) 2-month-old B6(Cg)-Tyrc-2J/J mice E-F) 10-month-old B6(Cg)-Tyrc-2J/J 
mice 

3.2 RPE cell border identification 

The success of drawing a border around each nucleus was considered separately for each 
nucleus, even if two nuclei appeared to be within the same cell. So, the number of possible 
successes was equal to the number of identified nuclei. A border was considered successfully 
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identified if it exactly encompassed the nuclei that fell within its related cell, as determined by 
manual inspection. Over the six images obtained, the average success rate was 69% (Table 1). 
However, there was a large disparity between images. Two of the images had a success rate of 
92% and 89% (Visualization 4 and Visualization 5, respectively), while the other four images 
had an average success rate of 58% (Visualization 6, Visualization 7, Visualization 8, and 
Visualization 9). Borders considered successes, borders considered failures, and any borders 
excluded from counts of success and failures are shown for each image in Visualization 4, 
Visualization 5, Visualization 6, Visualization 7, Visualization 8, and Visualization 9 A-C, 
respectively. The two best segmented images had the smallest amount of retinosomes (Fig. 
4(A), 4(B)). Cell bodies in the other four images were not as prominent because of the amount 
of retinosomes and loss of the normal RPE structure (Fig. 4(C)-4(F)). 

Table 1. Success rate of identifying RPE borders over six imagesa. 

image age type successes fails total % success 
a 4-week-old BALB/c 95 8 103 92 
bb 4-week-old BALB/c 85 10 95 89 
c 2-month-old B6(Cg)-Tyrc-2J/J 61 35 96 64 
d 2-month-old B6(Cg)-Tyrc-2J/J 52 36 88 59 
e 10-month-old B6(Cg)-Tyrc-2J/J 65 41 106 61 
f 10-month-old B6(Cg)-Tyrc-2J/J 59 61 120 49 

asee Visualization 4, Visualization 5, Visualization 6, Visualization 7, Visualization 8, and 
Visualization 9 for which category every border was classified as 

bImage from [15]. 
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Fig. 4. Segmentation of RPE cells in six images of mice collected by TPM. Identified borders 
are shown as red lines around nuclei. A, B) Images collected from 4-week-old BALB/c mice 
corresponding to a and b in Table 1, respectively. Visualization 4 and Visualization 5 show 
which borders are considered successes, failures, and ignored from analysis for panels A and 
B, respectively. C, D) Images collected from 2-month-old B6(Cg)-Tyrc-2J/J mice corresponding 
to c and d in Table 1, respectively. Visualization 6 and Visualization 7 show which borders are 
considered successes, failures, and ignored from analysis for panels C and D, respectively. E, 
F) Images collected from 10-month-old B6(Cg)-Tyrc-2J/J mice corresponding to e and f in Table 
1, respectively. Visualization 8 and Visualization 9 show which borders are considered 
successes, failures, and ignored from analysis for panels E and F, respectively. 
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3.3 RPE cell border identification with revision 

Using the initial RPE cell segmentation results, we then tested to see if our scheme for 
revising the borders could improve the success rate. For images c-f in Table 1 and, 
correspondingly, Fig. 4(C)-4(F), the revision process provides an improvement in accuracy 
for each image, but the improved average accuracy across the four images is still only 68% 
(Table 2). We attribute this to the high retinosome content and poorly resolved cellular 
structures in these images. However, for the two images which were initially most 
successfully segmented, revising the cell borders further improved the success rate to 95% of 
border identification (Table 2). The failure rate was reduced from eight and ten down to five 
for each image, representing an improvement in the failure rate of 37% and 50%, respectively. 
There were two types of failures successfully rectified. The first type was when the 
determined cell border around a nucleus encompasses fewer nuclei and creates a smaller cell 
than it truly should – for example, a single nucleus instead of a two-nucleus cell. If the cell 
border around the neighboring nucleus correctly encompasses both nuclei, then the border 
around the first, incorrectly determined small cell could be inside the larger cell border (Fig. 
5(A)). Here, the neighboring nucleus’ border was correctly identified as the better border 
during the revision process (Fig. 5(B)). The second type of failure was when the border 
around a nucleus encompassed too many other nuclei (Fig. 5(C), 5(E)). After considering the 
scores of the other nuclei involved in the disputed border, the correct border was selected 
(Fig. 5(D), 5(F)). 

Table 2. Success rate of identifying RPE cell borders after revision of the borders. 

image age type successes fails total % success 
a 4-week-old BALB/c 98 5 103 95 
ba 4-week-old BALB/c 90 5 95 95 
c 2-month-old B6(Cg)-Tyrc-2J/J 74 22 96 77 
d 2-month-old B6(Cg)-Tyrc-2J/J 63 25 88 72 
e 10-month-old B6(Cg)-Tyrc-2J/J 68 38 106 64 
f 10-month-old B6(Cg)-Tyrc-2J/J 71 49 120 59 

aImage from [15].

 

Fig. 5. Examples of three successful corrections of cell borders determined for nuclei in image 
a of a 4-week-old BALB/c mouse. The left images (A, C, E) show the border around a nucleus 
as initially determined. The right images (B, D, F) show the border around the corresponding 
nucleus (A, C, E, respectively) after revising the border as described in text. Borders are shown 
as red lines; pixels identified as nucleus are shown as black. 
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4. Discussion 

To our best knowledge, semi-automated segmentation of RPE cells from TPM images of the 
retina has not previously been reported. So how does the performance of our method compare 
to that of other methods for segmenting structures within the retina? 

Bredies et al. [10] accurately identified 93% of their manually identified photoreceptor 
cells, whereas Chiu et al. [11] identified 99% of photoreceptors with a false positive rate of 
1.5%. Chiu at al [13]. also used a set of scores to help define the RPE borders and connect 
edges between pixels based on these scores. However, their images were from confocal 
microscopy. On average, Chiu et al. [13] segmented cells with an error of 1.49% in the 
number of cells segmented versus the number actually found in the image. On a per-pixel 
basis of segmenting geographic atrophy, Devisetti et al. [12] achieved a specificity of 92.9%. 
Segmenting retinal images from fluorescent SLO resulted in missing an average of 19 / 206 
cells or a 91% success rate; on simulated noisy data, this method achieved a success rate of 
97.21% [9]. Our current method does not reach the accuracy of the aforementioned algorithms 
but provides a baseline for comparison as the TPM field matures and analysis of TPM images 
advances. Our method employed several steps to arrive at the final segmentation result. This 
is common for segmentation methods, including segmentation of the RPE by fluorescent SLO 
[9]. 

On images of retinosome-rich retina, the accuracy of our method in identifying cell 
borders decreased. This was accompanied by a corresponding decrease in the visible presence 
of cell borders, as structures of the RPE cells began to break down. A high density of 
retinosomes in cell images is an important feature indicative of early disease that can easily be 
segmented. Thus, the amount of retinosomes could be used to inform an algorithm as to the 
status of the expected disease state and therefore the expected integrity of the RPE mosaic. 
Retinosome content possibly could also be employed to adjust the scoring functions and 
improve segmenting cells in diseased states, by using retinosomes as expected points along 
the cell borders, where they usually sequester [5]. Additionally, for individuals with increased 
retinosome content, an image of RPE could be collected at a longer excitation wavelength, 
thereby de-emphasizing retinosome visibility. It remains an important open question to 
quantitatively evaluate retinosome characteristics to determine if specific distributions or 
morphologies are indicative of different disease states. In addition, such studies will allow 
improved scoring schemes for future segmentation methods. There is a trend of increased 
disparity in the accuracy of images taken from mice of the same age and genotype, as the age 
of the mice increases. We attribute the disparity to normal variation within RPE; as the health 
deteriorates and the retinosome content increases, the possibility for larger variation in the 
RPE structure also increases, making segmentation less consistent. 

Our images were taken of mice wherein most RPE cells contained two nuclei. But RPE 
cells of humans only contain a single nucleus under normal conditions. However, our method 
should still be applicable to humans, as it can correctly identify the border around RPE cells 
that have at least one nucleus. 

Many studies rely on quantification of imaged structures but their conclusions are only 
valid if the segmentation is accurate [17]. The ability to segment cells is directly related to the 
gradients associated with the demarcating edges [18], especially as demonstrated with cell 
fluorescence images [6]. In TPM of RPE cells, the small difference in intensity between the 
cell bodies and their borders makes proper segmentation a difficult but feasible task as we 
demonstrate here. The accuracy of the current method is measured at the resolution-level of 
encompassing the correct nuclei belonging to a cell. As a result, any determined cell border 
pixel or edge around a nucleus may not precisely track the true cell border. Because each 
border is determined individually, gaps and overlaps occur between borders of adjacent cells. 
To approach border identification with per-pixel accuracy, future methods could refine 
borders taking into account neighboring cells. If desired, our method could be used in 
conjunction with additional segmenting procedures such as active contouring to further refine 
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the placement of cell borders, after using the results from our method as the initial placement 
of the contour [8]. 

Six images were used to validate and test the algorihm of our successful segmentation of 
RPE cells imaged with TPM. Ideally, a separate and larger data set would have been used for 
validation and testing purposes. However, no specific features relating to the images were 
used in the development of the algorithm. Scores were based only on general observations 
about the overall structure of RPE images obtained by TPM. Multiple scores were used to 
determine an overall optimal border for each nucleus. Although each score by itself did not 
suffice to correctly determine cell borders, the interplay between them allowed a reasonable 
border to be determined. We suggest that, as larger and more diverse data sets become 
available for testing, the method will be generally applicable as TPM becomes a more 
commonly used imaging modality. 

Appendix 1 figures 

 

Fig. 6. Kittler minimal error thresholding applied to a TPM RPE image. A) Starting image of 
4-week-old BALB/c mouse. B-D) Thresholded images with nuclei identified as white pixels. 
Number of intensity bins is 10, 12, and 14 in B, C, and D, respectively. 
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Fig. 7. Continued from Fig. 6, the process of segmenting the nuclei. A) After selecting the best 
thresholded image, the selected nuclei pixels are set to low intensity values on the original 
image. B) The image pixels are then averaged with the 9x9 box of pixels around each pixel. C-
E) The blurred image (panel B) is then subjected to a second round of Kittler minimum error 
thresholding: the number of intensity bins here is 3, 4, and 6 for C, D, and E respectively. F) 
The pixels which are identified as belonging to a nucleus after the second round of 
thresholding are set to zero intensity. 
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Fig. 8. Nuclei segmentation using background intensity correction and scored minimum error 
thresholding. A) The starting image (same as Fig. 6 A) of a 4-week-old BALB/c mouse RPE. 
B) The background illumination pattern. C) The original image (panel A) after subtracting the 
background illumination pattern. D) The best image which was selected by score after the 
image from C) was subjected to Kittler minimum error thresholding with multiple numbers of 
bins, as described in the text. 

#242361 Received 8 Jun 2015; revised 20 Jul 2015; accepted 21 Jul 2015; published 23 Jul 2015 
(C) 2015 OSA 1 Aug 2015 | Vol. 6, No. 8 | DOI:10.1364/BOE.6.003032 | BIOMEDICAL OPTICS EXPRESS 3049 



 

Fig. 9. Continued from Fig. 8 the second round of thresholding on the background corrected 
image with noise filtering. A) Starting image after first round of thresholding. Nuclei are 
identified by black pixels. B) Image from panel A) after the pixels are averaged using the 9x9 
set of pixels surrounding each pixel. C) Best image before filtering. D) Best image after 
filtering noise as described in the text. E) The original background corrected image with 
determined nuclei pixels set to intensity zero (black). 
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Fig. 10. Initial stages of drawing a border. A) An eligible search region is defined with pixels 
that could be used to form the border, shown in white. B) Pixels are grouped into wedges of 21 
degrees, starting at the upper left most pixel of the nucleus. Each wedge contains the pixels 
eligible to be vertices for edges. C) All pixels within the first wedge are scored and the pixel 
with the best score is selected. D) The border is continued by sampling nuclei from the next 
neighboring wedge, scoring all possible edges, selecting the best scoring edge, and repeating 
this process around the nucleus. See Visualization 1, Visualization 2, and Visualization 3 for 
demonstrations of drawing the searching segments, drawing the border, and assigning pixels to 
a cell, respectively. 

Appendix 2 visualizations 

Visualization 1. “Greedy” edge search optimization. Starting from an initial edge vertex, 
edges to pixels in the neighboring two twenty-one degree wedge regions (see Fig. 10) are 
scored, and the best is selected for that edge segment. The process continues in a counter 
clockwise direction. 

Visualization 2. Six independent trials are conducted for drawing the cell border around 
the nucleus. Each trial starts sixty degrees counter-clockwise around from where the previous 
trial started. The border is shown as black lines. 

Visualization 3. Assigning cell pixels and nucleus (or nuclei) to an RPE cell. The pixels 
identified as belonging to the cell are shown in black. 
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Visualization 4. For the TPM RPE image a from Table 1 of a 4-week-old BALB/c mouse, 
designation of which borders were considered A) successes, B) failures, and C) were excluded 
from consideration. 

Visualization 5. For the TPM RPE image b from Table 1 of a 4-week-old BALB/c mouse, 
designation of which borders were considered A) successes, or B) failures. No borders were 
excluded from consideration. 

Visualization 6. For the TPM RPE image c from Table 1 of a 2-month-old B6(Cg)-Tyrc-
2J/J mouse, designation of which borders were considered A) successes, B) failures, and C) 
were excluded from consideration. 

Visualization 7. For the TPM RPE image d from Table 1 of a 2-month-old B6(Cg)-Tyrc-
2J/J mouse, designation of which borders were considered A) successes, B) failures, and C) 
were excluded from consideration. 

Visualization 8. For the TPM RPE image e from Table 1 of a 10-month-old B6(Cg)-Tyrc-
2J/J mouse, designation of which borders were considered A) successes, B) failures, and C) 
were excluded from consideration. 

Visualization 9. For the TPM RPE image f from Table 1 of a 10-month-old B6(Cg)-Tyrc-
2J/J mouse, designation of which borders were considered A) successes, B) failures, and C) 
were excluded from consideration. 
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